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How to choose a champion

I. Using trees                                       
(tournament = post-season)

II. Using complete graphs                          
(league = regular season)

III.Using regular random graphs and 
complete graphs                     



  Randomness in competitions



What is the most competitive sport?

  Soccer

  Baseball

 Hockey

Basketball

Football

How to quantify competitiveness?



• Teams ranked by win-loss record

• Win percentage 

• Standard deviation in win-percentage

• Cumulative distribution = Fraction of 
teams with winning percentage < x

Parity of a sports league
Major League Baseball

American League
2005 Season-end Standings

σ =
√
〈x2〉 − 〈x〉2

F (x)
0.400 < x < 0.600

σ = 0.08

In baseball

x =
Number of wins

Number of games



Data

• 300,000 Regular season games (all games ever played)

• 5 Major sports leagues in United States & England

sport league full name country years games

soccer FA Football Association England 1888-2005 43,350

baseball MLB Major League Baseball US 1901-2005 163,720

hockey NHL National Hockey League US 1917-2005 39,563

basketball NBA National Basketball Association US 1946-2005 43,254

football NFL National Football League US 1922-2004 11,770

source:  http://www.shrpsports.com/ http://www.the-english-football-archive.com/

http://shrpsports.com
http://shrpsports.com
http://www.the-english-football-archive.com
http://www.the-english-football-archive.com


0 0.2 0.4 0.6 0.8 1
x

0

0.2

0.4

0.6

0.8

1

F
(x
)

NFL
NBA
NHL
MLB

Distribution of winning percentage 
clearly distinguishes sports

σ

•Baseball most competitive?
•Football least competitive?
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• Two, randomly selected, teams play

• Outcome of game depends on team record

- Weaker team wins with probability  q<1/2

- Stronger team wins with probability p>1/2

- When two equal teams play, winner picked randomly

• Initially, all teams are equal (0 wins, 0 losses)

• Teams play once per unit time 

The competition model

〈x〉 =
1
2

−→
{

q = 1/2 random
q = 0 deterministic

(i, j)→
{

(i + 1, j) probability p

(i, j + 1) probability 1− p
i > j

p + q = 1



• Probability distribution functions

• Evolution of the probability distribution

• Closed equations for the cumulative distribution

Boundary Conditions                       Initial Conditions

Rate equation approach

dgk

dt
= (1− q)(gk−1Gk−1 − gkGk) + q(gk−1Hk−1 − gkHk) +

1
2

(
g2

k−1 − g2
k

)

gk = fraction of teams with k wins

Gk =
k−1∑

j=0

gj = fraction of teams with less than k wins Hk = 1−Gk+1 =
∞∑

j=k+1

gj

G0 = 0 G∞ = 1 Gk(t = 0) = 1

better team wins worse team wins equal teams play

Nonlinear Difference-Differential Equations

dGk

dt
= q(Gk−1 −Gk) + (1/2− q)

(
G2

k−1 −G2
k

)



Scaling analysis
• Rate equation

• Treat number of wins as continuous

• Stationary distribution of winning percentage

• Scaling equation

dGk

dt
= q(Gk−1 −Gk) + (1/2− q)

(
G2

k−1 −G2
k

)

Gk+1 −Gk →
∂G

∂k

Gk(t)→ F (x) x =
k

t

[(x− q)− (1− 2q)F (x)]
dF

dx
= 0

∂G

∂t
+ [q + (1− 2q)G]

∂G

∂k
= 0

Inviscid Burgers equation
∂v

∂t
+ v

∂v

∂x
= 0



Scaling solution
• Stationary distribution of winning percentage

• Distribution of winning percentage is uniform

• Variance in winning percentage

F (x) =






0 0 < x < q
x− q

1− 2q
q < x < 1− q

1 1− q < x.

f(x) = F ′(x) =






0 0 < x < q
1

1− 2q
q < x < 1− q

0 1− q < x.

σ =
1/2− q√

3

q 1− q

1

F (x)

x

q 1− q
x

f(x)

1
2q − 1

−→
{

q = 1/2 perfect parity
q = 0 maximum disparity
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League games

MLB 160

FA 40

NHL 80

NBA 80

NFL 16

Approach to scaling

•Winning percentage distribution approaches scaling solution
•Correction to scaling is very large for realistic number of games
•Large variance may be due to small number of games

Numerical integration of the rate equations, q=1/4

Variance inadequate to characterize competitiveness!
σ(t) =

1/2− q√
3

+ f(t) Large!

t−1/2

t−1/2
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The distribution of win percentage

•Treat q as a fitting parameter, time=number of games
•Allows to estimate qmodel for different leagues



• Upset frequency as a measure of predictability

• Addresses the variability in the number of games 

• Measure directly from game-by-game results

- Ties: count as 1/2 of an upset (small effect)

- Ignore games by teams with equal records

- Ignore games by teams with no record

The upset frequency 

q =
Number of upsets
Number of games
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The upset frequency
League q qmodel

FA 0.452 0.459

MLB 0.441 0.413

NHL 0.414 0.383

NBA 0.365 0.316

NFL 0.364 0.309

Soccer, baseball most competitive
Basketball,  football least competitive

q differentiates
the different 

sport leagues!
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Evolution with time

•Parity, predictability mirror each other
•Football, baseball increasing competitiveness
•Soccer decreasing competitiveness (past 60 years)

σ =
1/2− q√

3

S.J. Gould,  Full House, The spread of excellence from Pluto to Darwin, 1996



Recap

• Randomness crucial for modeling competitions

• Basic competition model incorporates upsets

• 1 parameter model

• Captures major statistical characteristics of sports 
leagues

• Enables quantitative theoretical analysis



I.  Tournaments
(trees)



Single-elimination Tournaments

Binary Tree Structure



• Two teams play, loser is eliminated

• Teams have inherent strength (or fitness) x

• Outcome of game depends on team strength

The competition model

N → N/2→ N/4→ · · ·→ 1

(x1, x2)→
{

x1 probability 1− q

x2 probability q
x1 < x2

x
strong weak

x4x3x2x1 x5



• Number of teams

 

•          = Cumulative probability distribution 
function for teams with fitness less than x to win 
an N-team tournament

• Closed equations for the cumulative distribution

Recursive approach

Nonlinear Recursion Equation

GN (x)

N = 2k = 1, 2, 4, 8, . . .

G2N (x) = 2p GN (x) + (1− 2p) [GN (x)]2



1. Scale of  Winner

2. Scaling Function

3. Algebraic Tail 0 0.2 0.4 0.6 0.8 1x
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Scaling properties

1. Large tournaments produce strong winners
3. High probability for an upset

GN (x)→ Ψ (x/x∗)

1−Ψ(z) ∼ zln 2p/ ln 2q

x∗ ∼ N− ln 2p/ ln 2
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Universal shape Broad tail

Ψ(2pz) = 2pΨ(z) + (1− 2p)Ψ2(z) Ψ′(z) ∼ zln 2p/ ln 2q−1

The scaling function

∞
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Theory
Simulation
Tournament Data

College Basketball
• Teams ranked 1-16
   Well defined favorite
   Well defined underdog
• 4 winners each year
• Theory: q=0.18
• Simulation: q=0.22
• Data: q=0.27
• Data: 1978-2006 
•1600 games

1 2 3 4 5 6 7 8 9 10 11 12

45 24 14 10 5 6 1 4 1 0 2 0



I. Conclusions

• Tournaments are efficient but not fair

• Strong teams fare better in large tournaments

• Tournaments can produce major upsets

• Distribution of winner relates parity with predictability



II. Leagues          
(complete graphs)



League champions
• N teams with fixed ranking

• In each game, favorite and underdog are well defined

• Favorite wins with probability    p>1/2         
Underdog wins with probability q<1/2

• Each team plays t games against random opponents

- Regular random graph

• Team with most wins is the champion

p + q = 1

How many games are needed for best team to win?



Random walk approach

• Probability team ranked n wins a game

• Number of wins performs a biased random walk

• Team n can finish first at early times as long as 

• Rank of champion as function of N and t

n

1

2
3

N

.

.

.

.

.

.

Pn = p
n− 1
N − 1

+ q
N − n

N − 1

wn = Pn t±
√

Dn t

(2p− 1)
n

N
t ∼

√
t

n∗ ∼
N√

t

n

p

q
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Length of season
• For best team to finish first

• Each team must play

• Total number of games

T ∼ N3

t ∼ N2

1 ∼ N√
t

1. Normal leagues are too short
2. Normal leagues: rank of winner 
3. League champions are a transient!

∼
√

N



Distribution of outcomes
• Scaling distribution for the rank of champion

• Probability worst team wins decays exponentially 

• Gaussian tail because

• Normal league: Prob. (weakest team wins)

Leagues are fair: upset champions extremely unlikely

QN (t) ∼ exp(−const× t)

Qn(t) ∼ 1
n∗

ψ

(
n

n∗

)

ψ(z) ∼ exp
(
−const× z2

)

n∗ ∼
N√

t

∼ exp(−N)

ψ
(
t1/2

)
∼ exp(−t)



1 4 8 12 16n
0

0.05
0.10
0.15
0.20
0.25
0.30

Pn

league
tournament

Leagues versus Tournaments

16 teams, q=0.4 n league tourna
ment

1 24.5 12.9

2 18.2 11.4

3 13.6 10.1

4 10.3 8.9

5 7.9 7.9

6 6.1 7.1

7 4.7 6.3

8 3.7 5.7

9 2.9 5.1

10 2.2 4.6

11 1.7 4.2

12 1.3 3.8

13 1.0 3.4

14 0.81 3.1

15 0.63 2.8

16 0.49 2.6
n∗ ∼

√
N



II. Conclusions

• Leagues are fair but inefficient

• Leagues do not produce major upsets



III. Gradual Elimination 
(regular random graphs       
and complete graphs)        



One preliminary round
• Preliminary round

- Teams play a small number of games

- Top M teams advance to championship round

- Bottom N-M teams eliminated

- Best team must finish no worse than M place 

• Championship round: plenty of games

• Total number of games

• Minimal when

M ∼ Nα

t ∼ N2

M2

T ∼ N t

1

2
3

N

M

T ∼M3

T ∼ N3−2α + N3α

M ∼ N3/5 T ∼ N9/5



Two preliminary rounds
• Two stage elimination

• Second round

• Minimize number of games

• Further improvement in efficiency

N → Nα2 → Nα2α1 → 1

T2 ∼ N3−2α2 + Nα2(3−2α1) + N3α1α2

3− 2α2 = α2(3− 2α1) −→ α2 =
15
19

T ∼ N27/19



Multiple preliminary rounds

• Each additional round further reduces T

• Gradual elimination

• Teams play a small number of games initially

Optimal linear scaling achieved using many rounds

Preliminary elimination is very efficient!

T∞ ∼ N M∞ ∼ N1/3

Tk ∼ Nγk γk =
1

1− (2/3)k+1

N → N
57
65 → N

57
65

15
19 → N

57
65

15
19

3
5 → 1

γk = 3,
9
5
,
27
19

,
81
65

, · · ·

optimal size of playoffs!



III. Conclusions

• Gradual elimination is fair and efficient 

• Preliminary rounds reduce the number of games 

• In preliminary round, teams play a small number of 
games and almost all teams advance to next round

• Gradual elimination is fair and efficient
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